27 research outputs found

    Bulk binding approach for PMIPv6 protocol to reduce handoff latency in IoT

    Get PDF
    Mobility management protocols are very essential in the new research area of Internet of Things (IoT) as the static attributes of nodes are no longer dominant in the current environment. Proxy MIPv6 (PMIPv6) protocol is a network-based mobility management protocol, where the mobility process is relied on the network entities, named, Mobile Access Gateways (MAGs) and Local Mobility Anchor (LMA). PMIPv6 is considered as the most suitable mobility protocol for WSN as it relieves the sensor nodes from participating in the mobility signaling. However, in PMIPv6, a separate signaling is required for each mobile node (MN) registration, which may increase the network signaling overhead and lead to increase the total handoff latency. The bulk binding approaches were used to enhance the mobility signaling for MNs which are moving together from one MAG to another by exchanging a single bulk binding update message. However, in some cases there might be several MNs move at the same time but among different MAGs. In this paper, a bulk registration scheme based on the clustered sensor PMIPv6 architecture is proposed to reduce the mobility signaling cost by creating a single bulk message for all MNs attached to the cluster. Our mathematical results show that the proposed bulk scheme enhances the PMIPv6 performance by reducing the total handoff latency

    A comprehensive survey of the current trends and extensions for the proxy mobile IPv6 protocol

    Get PDF
    Network based mobility management has attracted significant research interest due to its salient feature of relieving mobile nodes from participating in the mobility process. This feature of relying the mobility functions on the network entities would indeed eases the deployment of mobility solutions. Proxy Mobile IPv6 (PMIPv6) is considered as a promising network-based mobility management protocol in the next-generation mobile network. However, since the emergence of basic specification of the PMIPv6 protocol, it is still being developed in different directions to enhance its performance in order to ensure the best service for mobile users. This paper presents the PMIPv6 basic specifications and surveys the different extensions that have been considered by both the standardization bodies and researchers to enhance the basic PMIPv6 protocol with interesting features needed to offer a richer mobility experience, namely, clustering, fast handoff, route optimization, network mobility support, and load sharing. The research works conducted for these extensions are analyzed to specify the main issues that should be considered during the design of such extensions. Also, an integrated solution is proposed to show the possibility of combining more than one enhancement feature into a single integrated scheme

    A low cost route optimization scheme for cluster-based proxy MIPv6 protocol

    Get PDF
    Proxy Mobile IPv6 (PMIPv6) is a network based mobility protocol which has been designed to relieve the mobile nodes (MNs) from participating in the mobility process and to reduce the long handoff latency of the MIPv6 protocol. However, PMIPv6 incurs a long communication path due to the triangle routing problem, in which, all packets sent by MNs are obligated to pass through the local mobility anchor. Several solutions have been proposed to mitigate this issue. However, they still incur high signaling overhead to recover the Route Optimization (RO) status after handoff. In this paper, we propose a Cluster-Based RO (CBRO) scheme for the clustered architecture of the PMIPv6, in which, the Mobile Access Gateways (MAGs) are grouped into clusters with a distinguished Head MAG (HMAG) for each. In the proposed CBRO, the RO process is relied on the HMAGs to reduce the handoff latency while achieving a fast recovery of the optimized path after handoff. The proposed CBRO is evaluated analytically and compared with the basic PMIP and the current RO schemes. The obtained numerical results have shown that the proposed CBRO outperforms all other schemes in terms of signaling cost required to recover the RO status after handoff and the total cost performance metrics

    Fast handoff scheme for cluster-based proxy mobile IPv6 protocol

    Get PDF
    Proxy Mobile IPv6 (PMIPv6) was standardized to reduce the long handoff latency, packet loss and signaling overhead of MIPv6 protocol and to exempt the mobile node from any involvement in the handoff process. However, the basic PMIPv6 does not provide any buffering scheme for packets during MNs handoff. In addition, all the binding update messages are processed by a Local Mobility Anchor (LMA) which leads to increase the handoff latency. Previous works enhanced PMIPv6 performance by applying fast handoff mechanisms to reduce the packet loss during handoffs; however, the LMA is still involved during the location update operations. In this paper, we present a new fast handoff scheme based on a cluster-based architecture for the PMIPv6 named Fast handoff Clustered PMIPv6 (CFPMIPv6); it reduces both the handoff signaling and packet loss ratio. In the proposed scheme, the Mobility Access Gateways (MAGs) are grouped into clusters with a one distinguished Head MAG (HMAG) for each cluster. The main role of the HMAG is to carry out the intra-cluster handoff operations and provide fast and seamless handoff services. The proposed CFPMIPv6 is evaluated analytically and compared with the previous work including the basic PMIPv6, Fast PMIPv6 based on Multicast MAGs group (MFPMIPv6), and the Fast Handoff using Head MAG schemes (HFPMIPv6). The obtained numerical results show that the proposed CFPMIPv6 outperforms all the basic PMIPv6, MFPMIP6, and HFPMIPv6 schemes in terms of the handoff signaling cost
    corecore